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STRESS DISTRIBUTION IN THE FLANGES OF CURVED T AND I BEAMS

Extreme fiber stresses in curved frames (Rahmenecken) are determined
either according to Navier--as in the case of the straight'beam--or‘better yet,
according to the theory of the curved beam by Grashof and Resal. The latter
appraises the extreme fiber stress of the concave side much more correctly than
does the Navier method of calculation. This calculation of the curved beam
is designed, however, for solid (cross) sections and has to be modified when
applied to the T- and I-beam cross sections used in steel construection, since
one postulate of this theory, namely the invariability of the shape of the
cross section, is no longer fulfilled in these beam forms.

If one considers a curved beam of
rectangular cross section (as an example of a
solid (cross) section), one observes that
stresses running in transverse direction with
respect to the longitudinal fibers, in addi-
tion to the longitudinal stresses, are neces-

sary in order to maintain equilibrium. We
shall designate these stresses as transverse

stresses. In the moment application represented Figure 1
in Figure 1 the transverse forces act from both

surfaces toward the center and seek to compress the beam. The resulting de-
formation is so slight that it does not influence the longitudinal stresses
materially. The situation is quite different, however, in the case of thin-
walled T and I cross sections. The projecting parts of the cross sectlons ap-
pear to be subjected to bending stress due to the transverse forces (Figure 2)
and therefore they deform in the manner indicated. Since the transverse dis-
placements of the flange points are of the same order of magnitude as the flange
elongations resulting from the bending of the beam, they influence the distri-
bution of longitudinal stresses over the cross section a great deal. This is
the same phenomenon as the one observed in the case of the thin-walled curved
tube where the measured angles due to bending are several times as large as the
angles which are to be expected according to usual theory.*

» The following investigations refer to T or I v

beams which are symmetric with respect to the plane of

the web, the load plane of which coincides with the web

plane. Let the flange of the beam under consideration

have the radius of curvature r, and let the flange thick-

ness d be small compared with the other cross-sectional

Figufe 2

*v. K4rmén: The Deformation of thin-walled tubes etc. Z. d. VaI
1911, page 1889 (Journal of the Association of German Engineers etc.)




measurements; then the longitudinal stresses ¢ and the elongations e will
differ slightly at the upper and lower edge of the flange, so that we may
carry on our calculations with the mean values 7 and €. At a point at a dis-
tance x (Figure 3) from the plane of the web the stresses and elongations are
o, and €, The deflection of the flange at this point is Iy If one takes
out a flange plece of the length ds, the cross-sectional planes include an
angle d¢.* If the beam is subjected to a ldad, this angle increases by 4d¢.
As a result, a flange fiber located directly above the web elongates by Ads
(Figure 4), so that the elongation per unit length there amounts to

- _Ads
‘m = "gs
I -
]
(// P Y~
\. P ~ N
\v’// e —iii
‘:ld.s-‘z/:r dp
Figure 3 Figure 4

A strip located at a distance x from the web plane has deflected by Vyr and
i1ts center axis has assumed the position which is indicated in dotted lines in
Figure 4. 1If maghitudes of a higher infinitesimal order are neglected this
fiber has elongated by Ads - yxd¢; its elongation per unit length therefore is

— Ads . de Ads Yy
= Tds —Vx ds ds r

The stress directly above the web is

Gn—Er, —p. Ads []

and the stress at the distance x from the plane of the web is

Ads Vi - Yy ’
) == [11]

(e~

While the longitudinal stress in the center and at the surface of the
flange 1s kept constant, if one disregards the cross-sectional deformation,
Equation [1'] yields a decrease of the longitudinal stresses o, as y, increases,
i.e. as the distance from the web plane increases.

To complete the task before us, it is necessary to set up an addi-

* ¢ and @ (Figure 4) are the same.




tional relationship between o and y, other than that in Equation [1']. For
this purpose, we shall first calculate the magnitude of the transverse forces
in the beam. Let the force S flow in a fiber with the radius of curvature r.
From Figure 5 one obtains the trans-

verse force in the length ds, r{//ﬁé" |
‘ s 5 \n
# A=S8-:dy 5 - \
The transverse force per unit of length \ | -
' is therefore \‘;ML~{
_ de S '
=S =7 Figure 5

A force S = Fﬁd flows in a
flange strip of unit width (Figure 6); therefore the flange is subjected to
a transverse force

per unit of area.

o
-y T - i
i ] 3 A
,t_li__. R R £ b
Figure 6 Figure 7

If ohe takes out a strip of unit width, measured in the longitudinal direc-
tion of the beam, the flange of the beam can (for reasons of symmetry) be con-
sidered as a cantilever rigidly fixed at the web, which is subjected to the
load

3 ’
If one substitutes for d = $§~and for p the value obtained above,

one obtains for Ty the differential equation

dty, 12 1 129,
Ie T EE T E TE | 2]




If one now measures x from the fixing point, the boundary conditions
of this differential equation are

= — dy _
for x 0 y=0, dx 0, (2]
2!
- d*y ay
or x = Y A
for dx? 0, dx® 0

The general solution of the differential equation [2] has the form

Iy,
Yy = F + C + sinex - sinhax + C2 * sin ax + cosh ax

+ Cs - cos ax * sinh ax + C4 - cos ax - cosh ex,

wherein o* = ;52 The solution adapted to the boundary conditions [2!] is
r<d
o.r 1
Ix = —%_ (1 - -
2 + ¢cos 2ab + cosh 2ab
f2 - cosh ab - cos ax - cosh a(b - x) [3]

+ 2+ ¢cosab . cos alb - x) - cosh ax
+ sin ex + sinh «(2b - x) - sin a(2b - x) . sinh ax]).
From Equations [1'] and [3] it follows that
- T
0x=
2 + ¢o0s 2ab + cosh 2ab

[2 - cosh ab - cos ax -+ cosh a(b - x)

(3]

+ 2 . cos ab - cos a(b - x) « cosh ax
+ sin ex - sinh a(2b - x) - sin a(2b - x) - sinh ax]

In Figure 8 the stress distribution in the flange has been indi-
cated for two special cases. The stress has its maximum value % in the cen-
ter, above the web, and it decreases toward the edges. From the second rep~
resentation in Figure 8, one gathers that we might even meet with a case
where the stress at the edge has a different sign from the one above the web.

For the purpose of further calculation, we shall now assume the
flange of the width b to be replaced by a narrower flange in which, however,
the stress % prevails everywhere and the width b' is chosen in such a man-
ner that the total force in the beam remains unchanged. The equilibrium of
the internal forces in the beam is not disturbed thereby, since the result-
ing longitudinal force, according to the definition of the width b', remains
unchanged and also the magnitude of the moment is preserved, because the le-
ver arm of the forces in the beam has remained constant. Hence, for the
"effective width" b, the following holds true:

’ b

’ 1 -
b ::fdxdx
Im

o




After carrying out the integration, one obtains the simple expres-

sion

sin 2ab + sinh 2ab [u]

_b'_ 1
V=% “ab ' 2 + cos 2ab + cosh 2ab

The practical application is as follows: First, one determines
the effective widths of the upper and lower flange and thus one obtains an
jdeal cross section with reduced flange widths. The determination of the
stresses ¢ in the curved beam is based on this ideal cross section. For
these stresses the following holds true as is generally known¥

N X
“ 1 oG,
]
ob =132 ‘ - b
1 |
[~
aF
=r
o ?
s
,bﬂ__.i___,ql
v | 00866, T
1 S
NN N N S
ab-186
S I B {___
Figure 8 Figure 9

Herein, N is the longitudinal force and M is the moment referred
to the center of gravity of the cross section (M is positive if there is
tension on the inner surface, R is the radius of curvature of the gravity ax-
is (Figure 9), v is the distance from the center of gravity of the cross sec-

tion, Z the expression

Z:=/$2T¥1--dF (6]

+o
F

For the cross sections composed of rectangles which occur in actu-
al practice, one can find Z by adding and subtracting the parts of the indi-

*Cf. H. Miller-Breslau: "Die Graphische Statik der Baukonstruktionen" (Graphical Statics of
Building Constructions), Vol. II, Section 2, 2nd edition, page 368.




vidual rectangles. For such cross sections, the following relationship holds
true:

2

— - . w,l J—
Z_Raz_i:b log nat o FR? [61]

In this formula, F 1s the total area of the cross section, w1 and w2
are the distances of the upper and lower sides of the rectangle from the cen-
ter of curvature, b is the width of the rectangle. In Figure 9, b and w are
Indicated for the upper flange.

If R is greater than twice the height of the beam, one can, with
very good approximation, substitute the moment of inertia J for 7 so that

N M Mo R [5,]

The extreme fiber stresses calculated in the manner indicated are
the maximum values of the stress which actually occur. They occur directly
above the web. 1In the direction away from the web the extreme fiber stresses
oy decrease, and, indeed, according to the same law as‘the E%. The numerical
determination of the E% from the rather complicated Equation [3'] is no long-
er necessary, either for the determination of the maximum extreme fiber stress
or elsewhere.

There st1ll remains the calculation of the magnitude of the second-
ary bending stresses in the projecting parts. The moment per unit of'length

of the flange is at the point of fixation

b
M’:—d—/x;vdx
F)
[

If one carries through the integration and if it is considered
2
that the resisting moment of the flange is W =-Q—, the bending stress ¢! re-
sults in the form 6

cosh 2ab - cos 2ab
a.l:,f;}ﬂ:ﬁ—‘ '(Tm [7]
2 + cosh 2ab - cos 2ab

Since ¢' depends on Eﬁ, we must, in determing the stress in the
ideal cross section, also calculate the stress Eﬁ, i.e. the stress at the
distance-%—from the extreme fiber, in addition to the extreme fiber stress.

In determing the longitudinal shear stresses and transverse stresses
transmitted by the collar rivets (Halsnieten) of riveted beams, the ideal

cross section should again be used, as the decrease of the longitudinal stres-

ses in the projecting parts of the cross section is taken into account in this
manner. From Equation [5] the value of the longitudinal shear stress per unit

b




of length can be approximated as

=0 5 + 5] (8)

R, F, and Z have the same significance as in Equation [51; Fl and
S1 represent area and static moment of the flange of the ideal cross sectioh
referred to its gravity axis, Q is the shearing force and r the radius of
curvature of the flange axis. The transverse force per unit of length with
the same désignations is

(N M\F SR
() 3 o

The composition of these two forces results in the total force
transmitted by the collar rivets.

In the case of beams with face plates the upper rivets (Kopfniete),
besides being subjected to the longitudinal shear stress which is calculated
according to Equation [8], are subjected to additional stresses due to the
secondary bending of the flanges. These rivets have to take the total shear
stress in the horizontal flange Joints. If the calculations are based on the
most unfavorable assumption that the joint lies in the center, then the shear
stress per unit of length is

_ [3.Q __ 3 ,
—fT“d‘"”‘ 72" M

wherein M' is the bending moment determined above. Finally there results

t=n-Loo, [10]

g is the coefficient indicated in Equation (7].

For the practical calculation, the values of r and u are represent-
ed as functions of-ha in the following table. Herein, & is the flange thick-
ness, b the width of the projecting flange, r the radius of curvature of the

flange.

Table for Calculating the Effective Widths b! = vb
and the Additional Bending Stress o' = na

0 o1lo2lo0o3lou}los]|0.6|07]08]0.9

7.000(0.99%(0.977]0.950]0.917]0.878 0.838(0.8000.762]0.726
0 |0.297/0.580[0.836]1.056]1.238{1.382|1.495(1.577 1.636

tol1ai12l13 (1|15 20[3.0]401}5.0

0.6930.663{0.636(0.611]0.589]0.569|0.495|0.1k4 0.367(0.334
1.677 1.703|1.72111.728|1.732|1.732(1.707 1.671|1.680}1.700

® |w g,ld,\,v:’w g|c§,




Let us point out once more that b represents the width of only
the projecting part of the flange; we are justified in deducting even a part
of the fillet (see example in Figure 10). Likewise, the reduction by v,
refers only to these projecting parts so that, for example, the angle legs*
adjoining the web remain fully effective. One difficulty presents itself
when the rivet deductions are considered. The simplest procedure is to re-
duce also the rivet deductions in the projecting parts by wv.

Let us point out that in the foregoing derivation an essential
factor was neglected. In setting up Equation [1)] and (1'] the calculation
of the elongations Eﬁ and E& was performed in such a manner that a linear
condition of stress was assumed to be present although, in addition to the
stress o there were still the stresses ¢' perpendicular to oy If this
had been taken into account, the derivation (as well as the final result)
would have become considerably more complicated as in that case the distri-
bution of the stresses o, over the flange thickness d could no longer have
been considered uniform. Furthermore, in setting up Equation [2] it was not
takgn into account that -- because of the impeded transverse elongation --
ﬁzm:-T J should correctly be substituted for J, wherein-%-is Poisson's ratio.
This second error of neglect actually would not havg been necessary since it
is not at all difficult to introduce the factor mzm_ 7 into the calculation.
It will be seen, however, that this second error of neglect is partially com-
pensated for by the first.

I have carried out the more exact calculation and, in order to

have a basis for comparison, I have considered the reduced stress as the
measure of working stress of the material. The exact calculation always
yields lower working stresses than the foregoing method of calculation; as a

matter of fact, the differences A in percentages amount to :

2
-;b—d—=0.0 01 02 03 04 05 06 10 50

A%y 0 83 148 149 63 6.1 57 47 43

e Numerical example: An
- 3 i -1 IP 30 with a radius of curvature
ﬂ H R = 40 cm (measured to the center of N
§E¥?£§r5§ gravity) is to be subjected to the
ot : moment M = -7.5 tm and the longi- {
. Ll | At tudinal force N = -10 t; d = 2.0 cm
i ; H T (Figure 102); the width of the pro-
§;] S $ 38gY  Jecting parts, if nalf the fillet i
< = sOTES deducted, amounts to b = 13.5 cm;
Figure 10a Figure 10b the radii of curvature of the flange

*Translator's note: This term apparently refers to the case of a face plate riveted to the web by
means of angle members.
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axes are r_ = 54 em, r_= 26 cm?
) u
For the upper flange %:1,59, »=0523, p=1722,
For the lower flange é;izzgﬁo, »=0390, u=1675

The flange widths of the ideal cross section are
B,=12: 13.5.0.523 -+ 1.2 + 1.8 =17.4 cm,

B,=12-135-0.390 + 1.2 + 18=13.5cm

Tn view of this sharp curvature, the reduction is quite consid-
erable. The ideal cross section is indicated in Figure 10b. We calculate

the quantities F and Z by neglecting the fillets.
F=914 cm?
The displacement of the center of gravity amounts to

. 2(174—13.5)- 14.0

= 514 =116 cm

The radius of curvature R measured to the new gravity axis is therefore
R —=41.16cm

If the division into rectangles is performed in such a way that
two small rectangles are deducted from each side, Equation [61] yields

Z =41.16%|17.4 - log nat —g% —3.9.log nat g—g — 12.3 - log nat -g% —41.162.91.4 = 23,700 cm*

Hence, according to Equation [5], the surface stresses are

10 750 750 13.84

6o=—gra * arT6.9ra T 33700 116 —g5 — + 0419 em?,
I 750 750 16.16 _

%u=—914 T §16-9T4 ~ 300 ‘116 g5 =078l e

We still need the stresses at the distance-%—= 1 em from the upper
or lower surface respectively in order to be able to calculate the additional

bending stresses. According to Equation [5] with v = 12.84, vy, = -15.16 cm

in the upper flange -3, = + 0.401 t/cm?,
‘ in the lower flange g, =—0.669t/cm?
Hence, the additional bending stresses o' = ”Eh on the external

surfaces amount to _
a, = 1.722.0.401 = -+ 0,691 t/cm?,

¢, =1.675.0.669 = + 1.121 t/cm?

*Dranslator's note: The subscripts o and u apparently stand for toben' and 'unten', meaning

rabove'! apd 'below', viz upper and lower radius.
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If one uses the reduced stress 0 =10 —030¢, 85 determining the
working stress, it follows that

g req = 0.691 — 0.30 - 0.419 == 0.565 t/cms,
@y req = 11121 + 0.30.0,751 = 1.346 {/cm?

For the sake of comparison, let us calculate the same case accord-
ing to the method usually employed in steel construction.
According to Figure 10,

F=154 cm?,

Z =40°(30- log nat gg 28.8 - log nat g;’ —402. 154 = 28 720 cm*,

10 750 75040 15

%0="T15¢ T $0.154 T 28720 " 55 — T 0322 t/cm?,
10 750 75040 15
=" 154 T 0154 ~ 98720 ' 95 — — 0570

The stresses Eﬁ are now

in the upper flange 73, — 4+ 0.307 t/cm?,
in the lower flange o = — 0526 t/cm?

For the secondary bending stresses the following formula applies:

hence
o, =15,07 +0.307 = 4 1,557 t/cm2,
= 10.50+ 0.526 = - 5.523 t/cm?
whereby the reduced stress on the inner surface is obtained as

0= 5.523 + 0.30 - 0.570 = 5.694 t/cm?

which is much higher than permissible, whereas the actual stress amounts to
only 1.35 t/cm2.

As this example shows, the more exact calculation entails quite a
considerable economy in the case of sharply curved beams.

NAVY-DPPO PRNC, WASH.. D.C




